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We study phase ordering dynamics of spatially periodic striped patterns on the small-world network that is
derived from a two-dimensional regular lattice with distance-dependent random connections. It is demonstrated
numerically that addition of spatial disorder in the form of shortcuts makes the growth of domains much slower
or even frozen at late times.
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I. INTRODUCTION

Striped patterns abound in a variety of disparate systems,
including Rayley-Bénard convection �1�, microphase separa-
tion in block copolymers �2�, magnetic solids and fluids �fer-
rofluids� �3�, nonlinear optics in dissipative media �4�, and
ocular column formation �5�. They are sometimes called
rolls, lamellar, or smectic patterns. Spirals and targets are the
coherent structure that approximates quite well the striped
pattern except for the existence of a point defect in the cen-
ter, and these patterns are also prevalent in nature, most no-
tably in physiological systems �6�.

We investigate the formation of a stripe state. When a
system is suddenly brought into an ordered phase where the
initial state is thermodynamically unstable, the system devel-
ops a labyrinthine domain morphology consisting of locally
ordered stripes of well-defined width. As time increases,
stripes which are initially randomly oriented align in parallel,
thereby creating an increasingly ordered pattern. Because of
existence of the spatial period �2� /k0� of the ordered struc-
ture, the dynamics of this phase ordering �which is usually
called domain coarsening� of striped states is quite intriguing
in comparison with the much studied case of standard phase
separation �7� for which k0=0. Despite a great effort of re-
search community, however, there are still conflicting results,
and the explanations for different results are not completely
consistent �8�.

In theoretical models for the pattern formation, regular
lattices are often taken to be the structure over which the
phase ordering kinetics takes place, with the involving ele-
ments �molecules, neurons, etc.� interacting in a regular way.
However, it has been found recently that the regular lattices
are often inappropriate as the structure of interactions, which
should instead be described by complex networks whose
nodes represent the consisting elements and links represent-
ing the interactions among them �9–11�. Among the class of
complex networks, a particular role is played by the small-
world �SW� networks �12–14�. By introducing a certain
amount of random connections into an initially regular net-
work, it allows us to interpolate between the regular lattice
and the random network. Outstanding topological properties
of the SW networks are �i� a small average distance between
nodes, which is a typical feature of random networks, and

�ii� the degree of clustering, a measure of the local correla-
tions among links of the network, has a high value as in
regular lattices. For instance, neurobiological systems con-
sisting of a large number of neurons possess such SW prop-
erties �15�. Particularly noteworthy in this connection is the
observation of intercellular spiral waves in the hippocampus
�16�. Furthermore, in the network model that mimics the
regions of the brain where these spirals are observed, epilep-
tic bursts and seizures occur only when the connectivity of
the network is characterized as SW �17�. This observation, as
a whole, suggests that spiral patterns in neuronal networks
possibly arise from the SW topology.

Although pioneering numerical works have given some
indications that the strong connectivity of SW enhances co-
operative effects in, e.g., epidemic spreading �18� or syn-
chronization �13,19�, the relationship between the emergence
of the SW regime and the arising of collective behaviors
remains unclear �20–22�.

Most of the studies done so far on complex networks have
focused on topological networks where the nodes and links
exist in some abstract space and the physical distance be-
tween nodes is irrelevant. However, in many real systems,
the networks are embedded in spatial structure �Euclidean
space� and possess geography in addition to their topology.
For example, the neuronal networks in brains occupy three-
dimensional space, and the likelihood of connections �hence
interactions� between nodes is certainly affected by their
geographical proximity. One thus expects that nontrivial con-
sequences arise from the interplay between geography and
topology �23�. From this perspective, the geographical effect
on the topological properties of SW networks has been con-
sidered �24�. Also a good deal of study of the collective or
dynamical processes on those SW networks has been re-
ported. Examples of problems studied are the critical behav-
ior of Ising model �25�, diffusion �26,27�, searching and
navigation problems �28�, epidemic spreading �29�, and syn-
chronization �30�. However, no agreement is yet reached on
which structural property plays the most significant role in
each case.

In this paper we study the domain coarsening of striped
patterns in two-dimensional systems on square lattices which
have the SW topology and in which interaction patterns de-
pend on the Euclidean distance between nodes. We try to
understand how the coarsening dynamics occurring on these
networks depends on their geographical properties. To that
end we use the simplest model that exhibits the phase order-
ing kinetics of lamellar patterns: the Swift-Hohenberg �SH�*Corresponding author; shiway@kit.ac.jp
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equation �31�. This is one of the most popular paradigmatic
models that are employed to give a qualitatively correct de-
scription of the formation and evolution of lamellas observed
in laboratory experiments �32�. However, so far there has
been no attempt based on this prototypical model at showing
the role of the geographic topology in the ordering dynamics.
We study the coarsening in numerical simulations of this
equation. The aforementioned connection to neuronal phe-
nomena is expected to make our study of special relevance,
and the results given below may furnish useful hints for un-
derstanding properties of collective neuronal behavior.

The paper is organized as follows. In Sec. II we briefly
describe the SH model and define the geographical SW net-
works on which the ordering process occurs. Section III con-
tains theoretical considerations to envisage the qualitative
features of configurations during coarsening before studying
numerically the growth of stripes in quantitative detail �Sec.
IV�. In Sec. V, a summary and discussion is given.

II. MODEL ON GEOGRAPHICAL SMALL-WORLD
NETWORKS

To study the effect of the distance-dependent connectivity,
we consider a class of networks, called hereafter geographi-
cal small-world �GSW� networks. To construct these net-
works, we start with a two-dimensional square lattice. We
then add with a distance-dependent probability one shortcut
per each bond �also called edge or link� on the original regu-
lar lattice, where the probability of a randomly chosen pair of
vertices �nodes, sites� i and j being connected is given by
pf��rij�, where �33�

f��r� = �1 − exp�− r−���/N . �1�

Here rij is the Euclidean distance between the two vertices in
the original lattice and N is the normalization factor;
� j f��rij�=1. The parameter p is thus defined as the probabil-
ity per edge on the underlying lattice of there being a short-
cut anywhere in the network. We do not remove any bonds
from the regular lattice, and more than one bond between
any two vertices as well as any bond connecting a vertex to
itself is prohibited, so that an average coordination number z
is given by z=4�1+ p�. The case �=0 is thus equivalent to
the original SW network in Ref. �14�, and we henceforth
refer to this case as the plain SW network. Notice that

f��r� � r−� as r → � .

Accordingly the parameter � represents the strength of the
distance-dependent suppression of the random long-range
links and is sometimes called clustering exponent. In this
way we obtain a two-parameter family of networks by tuning
the values of p and �.

On this GSW network, evolution of the order parameter
�i, to be defined at each site i on the network, is described by
the SH model,

��i

�t
= ��i − g�i

3 − ��2 + k0
2�2�i + �i. �2�

Here �i is the delta-correlated Gaussian white noise. The
positive constants g and k0 are phenomenological param-

eters. The � is the bifurcation parameter, with the transition
to lamellar structures of spatial period of order k0

−1 appearing
for �	0 when p=0. The Laplacian operator in the present
case consists of two terms,

�2 = ��2�nn + ��2�sc, �3�

where ��2�nn is the Laplacian on the original square lattice,
while ��2�sc is the one on the random part of the network.
Both of these Laplacians are fully characterized by the adja-
cency matrix �Aij�, taking the value Aij =1 if the vertices at i
and j are connected by an edge, whereas Aij =0 otherwise.
Thus, for example, for any quantity Xi on the site i of the
network,

��2�scXi = �
j

DijXj , �4�

with

Dij 	 Aij − Ki
ij . �5�

The Ki is the degree of the vertex i counting the random links
attached to this vertex: Ki=� j Aij.

III. PRELIMINARY CONSIDERATIONS

Before discussing numerical simulations in quantitative
detail, it is worthwhile to have an approximate idea of quali-
tative features of the configurations that are expected to the
model �Eq. �2��. To that end, we will make a mean-field-type
approximation to replace disorder with its average value.
Thus we replace the diffusion operator �2 in Eq. �2� with its
average over random links,

��2� = ��2�nn + ���2�sc� , �6�

where

���2�sc�Xi = �
j

�Dij�Xj ,

�Dij� = 4pf��rij� − 4p
ij . �7�

In the above, �¯ � represents the average over the random
links. With ��r�	�i �r being the position vector of the site i�
and �2	��2�nn for simplicity, Eq. �2� is then reduced to

���r�
�t

= ���r� − g�3�r� − ��2 + k0
2 − 4p�2��r� − 8p��2 + k0

2

− 4p��
r�

f��
r − r�
���r�� − 16p2�
r�

�
r�

f��
r

− r�
�f��
r� − r�
���r�� . �8�

In the present analysis we wish to concentrate ourselves
solely on the effect of random links, so that we employ fur-
ther the Gaussian decomposition approximation �34� for the
nonlinear term to replace

�3 → 3��2�� ,

where ��2� is taken to be the steady-state average. Equation
�8� now takes the form, in Fourier space,
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�t�̂�k� = ��̃ + �k2 − k0
2 − 4pF��k��2��̂�k� , �9�

where �̂�k� is the Fourier transform of ��r� and �̃	3g��2�
−� is the renormalized control parameter, which is assumed
to be positive. Also

F��k� =
0

�drrf��r��J0�kr� − 1�
0

�drrf��r�
, �10�

where J0�z� is the Bessel function of the first kind. We here
remind readers again that the calculation is being done in
two spatial dimensions.

The linearized form �Eq. �9�� then enables one to calculate

the structure factor S�k� defined by S�k�= �
�̂�k�
2�. Conse-
quently, the peak position kc of S�k� is determined as the root
of the equation

k2 − k0
2 − 4pF��k� = 0. �11�

Since F��k�=−1 for ��2, we immediately find that

kc = ��k0
2 − 4p if p � k0

2/4
0 otherwise.

� �12�

For �	2, Eq. �11� is solved numerically and the obtained kc
is exhibited in Fig. 1 as a function of � for varying values of
p.

From the above results we first note that for p�k0
2 /4, we

always have a stripe state irrespective of the value of �.
Particularly in this case, if ��2, the wave number of the
striped pattern is equal to the plain SW value �35�. On the
other hand, for pk0

2 /4, the transition from the homoge-
neous to the stripe state occurs as � crosses the threshold
value �c�2 from below. Moreover, we find that decreasing
the range of random links �i.e., increasing �� pushes the spa-
tial period to lower values. All these qualitative features are
confirmed by numerical simulations of Eq. �2�, to which we
now turn in Sec. IV.

IV. SIMULATION RESULTS

A. Methodology

We shall consider now the phase ordering of the present
system for different choices of the shortcut parameter p and
the clustering exponent �. We have carried out simulations
based on Eq. �2�. Throughout this section we consider only
the case �i=0. A two-dimensional space is divided into
square cells with periodic boundary conditions. The cell size
is set to be unity. Unless otherwise stated, all demonstrations
in this paper are results obtained on a system of 1024
�1024 lattice. In order to allow easier exploration of the
long-time regime of pattern formation, we follow the spirit
of the cell-dynamical-system �CDS� method �36�. For Eq. �2�
we solved the following CDS model:

��n,t + 1� = A tanh ��n,t� − L��2 + ��2��n,t� , �13�

where ��n , t� is the order parameter associated with a lattice
site labeled by n at time t. The Laplacian is evaluated as
given in Eq. �3�. Initial conditions for ��n� were the spatially
random distribution between �0.01. The parameters used
were A=1.0015, L=0.0087, and �=0.9. The choice of these
parameters is dictated by a linear stability analysis of the
discrete map �Eq. �13��. In the absence of shortcuts, the ho-
mogeneous state ��=0� is destabilized for A	1, and the
wave number k0 of the most unstable mode is given by

k0 = arccos�2 − �

2
� . �14�

Thus with �=0.9, we have k0=0.988 and the aspect ratio �
as defined by the ratio of the system size to 2� /k0 is �
�160. Hence the finite-size effects are assumed to be negli-
gible in the gross behavior of coarsening, and one sample of
size 10242 is sufficient for our purpose.

We have constructed the GSW network as defined in Sec.
II. The topological characteristics of our networks with and
without geographical organization are compared in Fig. 2.
Since the frequently used clustering coefficient, C3, as com-
puted via the number of triangles in the network is generi-
cally zero for the plain SW graph on the square lattice �37�,
it is unable to quantify the high clustering actually present in
our network structure. �A triangle is a set of three vertices
with edges between each pair of vertices.� Therefore we have
measured the grid coefficient C4 �38� that is defined as the
relative abundance of the quadrilaterals in the network and
take the sum C34	C3+C4 as a measure of the clustering in
our GSW networks. The average shortest-path length � was
measured using a burning algorithm, also called breadth-first
search �39�. Figure 2 clearly demonstrates that the network
has the SW property in some regions of its parameter space
�p ,��.

B. Results

1. Trends with parameters

Figure 3 shows the morphology of patterns observed dur-
ing the coarsening process after the same initial conditions
for different � and p. As � is increased, the stripes become

FIG. 1. Peak position kc of the structure factor as a function of
the clustering exponent � of the GSW network. The parameter k0

used in this plot is k0=0.988 �see Sec. IV A�.
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more ordered �panel �a��, indicating the coarsening is en-
hanced. In cases where the pattern freezes into an inhomo-
geneous state for �=0, the frozen state disappears as � is
increased �panel �b��. Further increase in � results again in
the enhancement. It is also apparent when we look at panel
�c� that there is a general trend of the GSW topology pro-
moting an increase in the stripe wave number with increasing
value �.

Quantitative trend of the variation in the coarsening dy-
namics with the value of � is shown in Fig. 4. Here we
computed the circularly averaged structure factor S�k , t� de-
fined by

S�k,t� = ��̂�k,t��̂��k,t�� , �15�

where �̂�k , t� is the Fourier transform of the order parameter
� at time t and the orientation of the wave vector k is aver-
aged over. To remove any effect due to the finiteness of the
ratio of the thickness of domain walls to the domain size, we
calculated S�k , t� after the data were hardened using the
transformation �→sgn �. Also shown in Fig. 4 is the orien-
tational field correlation function, C2�r , t�. It is defined by

C2�
r − r�
,t� = �exp�i2���r,t� − ��r�,t���� , �16�

averaging over the spatial coordinates r and r� for fixed 
r
−r�
 for each time t. Here the local orientation ��r , t� of the
stripe is defined as the angle in the direction normal to the
stripe axis, and it was computed with a slight modification
�40� of the wavelet transform method in Ref. �41�. The factor
of 2 is required by a twofold symmetry of striped patterns.

It is seen in Fig. 4�a� that there is a shift in the position
where S�k� has its maximum, the shift occurring toward
larger k with increasing �. Accompanied with it are narrow-
ing of the scattering profile and the attendant increase in the
peak intensity. Figure 4�b� shows that the orientational cor-

���

���

(c)

α=2.4 α=3.0 α=6.0 α=∞

FIG. 3. Patterns achieved after 398 107 time steps from the
same initial conditions for various values of � at �a� p=0.1, �b� p
=0.4, and �c� p=1.0. The white regions denote positive values of
the order parameter �, while the gray ones denote negative �. Each
figure exhibits a central 2562 portion of the 10242 lattice system.
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FIG. 2. �a� The clustering coefficient C34 and �b� the average
shortest-path length � as a function of p for different �. Each data
point is obtained with the 5122 lattice system.
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relation function C2�r� is a monotonically decreasing func-
tion, and it is clear that there is a dependence on the value of
�.

The peak position �kc� of the structure factor S�k� repre-
sents the width of stripes, and the full width at half maxi-
mum, 
k, defines the characteristic length scale of the striped
domain by �=2� /
k. We extracted kc and 
k from a squared
Lorentzian fit to S�k� at each time t,

S�k� = a2/��k2 − b�2 + c2�2. �17�

The length scale ��t� measured in this way is well fitted by a
power law ��t�� t� at the late stage of coarsening. The peak
position kc and the growth exponent � are plotted as a func-
tion of � in Fig. 5 for various p. Comparing with Fig. 1
shows that the predicted effects on kc of the geographic pa-
rameter � are much stronger than those observed in simula-
tions. �As is usual with critical phenomena, transitions near
��2 are smeared due to the finite-size effects.� Evidently, to
obtain a more quantitative agreement would require the
higher-order corrections in the disorder-average perturbation
theory �27,42� in which the mean-field prediction appears as
the lowest-order term. It is, however, not within the scope of
the present paper and we leave it an open question.

As an alternative measure of the domain growth, we have
also extracted the orientational correlation length, �o, from
the decay of C2�r� as the value of r at which C2�r� reaches
the value 0.3; with the other values chosen we found that it
entailed little changes in the growth exponent. The �o�t� thus
obtained is found to obey the power law growth again but
with a growth exponent different from �. The latter result
can be understood if one notes that in the spatially periodic
patterns as observed in the present study, the length scale
extracted from S�k , t� is a complicated convolution of the
domain size and the variation in the local wave number k,
and it does not have the same geometrical interpretation as
the length scale extracted from C2�k , t� �43�. However, we
have found that the two different measures of coarsening
exhibit the similar trends concerning their dependence on the
parameters � and p.

Representative results of the behavior reported above are
summarized in Table I, where we list the effects that different
topologies have on the growth of striped domains. In the case
of plain SW networks, the structure of networks is solely
parametrized by p, which represents the degree of random-
ness present in the system; for p=0 the lattice is regular,
while for p=1 it is fully random. Clearly we see that the
regular lattice is an optimal architecture in terms of coarsen-
ing efficiency. The driving force for coarsening of striped
patterns is greatly reduced due to disorders introduced by
shortcuts which tend to pin the interfaces in order parameter
configurations that are locally metastable �35�. Here we re-
mind the reader that the competition between interactions on
different length scales causes the emergence of a large num-
ber of metastable states, and this is generally considered as a
condition for glassiness that is incurred in the system �44�.

Now let us examine the GSW case. The second and the
third columns of Table I imply that the limit �→� or p
→0 will perform fastest in domain growth. In fact we found
that the regular lattice again performs faster than any other

disordered networks, the exponent attaining the by-now-
classical �albeit theoretical interpretation of this value is still
missing at present �8�� value ��1 /5. We remark in this
connection that the GSW network is equivalent to a regular
lattice either in the case p=0 or in the case �=� with p=1,
while the case �=� with p�1 corresponds to the disordered
lattice �the reason being that in this case a bond which con-
nects a vertex to its next-nearest neighbors on the undelying
lattice is added at random with probability p�.

2. Role of clustering in slow domain growth

We have shown above that the growth exponent � takes
on the maximum value in the regular lattice. If one looks
more closely at the results in Table I, one notices an appar-
ently perplexing behavior of � regarding its dependence on
the two topological characteristics �i.e., � and C	C4 or C34�
of SW networks. On one hand, in the plain SW network C4
increases as p approaches its regular-lattice value �p=0�. On
the other hand, in the GSW network C34 decreases as p→0
for �	2. In both type of networks, however, � increases
with the approach to the regular lattice. We may thus ask
whether a system can have the more enhanced coarsening
with a higher C or with a lower.

What we are then plotting in Fig. 6 is the variation in the
growth exponent with the strength of the clustering effect
C34 when the average shortest-path length � is kept fixed at a
given value. �In this way we have singled out the role of C34
or � in the coarsening dynamics.� Note that choosing either
��35 or ��13, we are now examining a region of the pa-
rameter space which presents the small-world property, i.e., a
region in which clustering is high and mean node-node dis-
tance is simultaneously low �see Fig. 2�. Clearly the expo-
nent � is a decreasing function of C34 and the downward
slope becomes flattened out at larger C34 for which we ob-
served the pattern effectively gets stuck in the disordered
stripe state. In order to understand this behavior, we made a
histogram of the local clustering coefficients of vertices �the
average of which over all the vertices is thus our clustering

TABLE I. Variation in main characteristics of the network and
the pattern for a change in p or � for the plain and the geographical
SW networks. On the change in p or � indicated in the second row,
the network topology changes as indicated in the third row. The
characteristics given are clustering coefficient C4 or C34, average
shortest-path length �, peak position of structure factor kc, and do-
main growth exponent �.

Plain SW Geographical SW

p↓
Random→Regular

�↑ �p�0 fixed�
Plain SW→Regular a

p↓ ���0 fixed�
Random→Regular

C4↑ C34↑ �
C34↑ if ��2

C34↓ if �	2
�

�↑ �↑ �↑
kc↑ kc↑ kc↑
�↑ �↑ �↑
aNote, however, that the limit �→� does not always imply the
regular lattice, as explained in the main text �Sec. IV B 1�.
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coefficient C34�. We found, when C34 increases, the distribu-
tion of the local clustering coefficients becomes very broad-
ened. Physically this is because in the present case, if C34
increases, both � and p are simultaneously increased; thus
not only the density of local connections is increased but an
increasing number of network configurations become pos-
sible. This in turn allows the system to support a large num-
ber of metastable states, i.e., a necessary prerequisite to
glassiness.

Also evident from the figure is that as a function of �, the
growth exponent � is an increasing function. As the leftmost
end of each curve of data corresponds to the �=0 case, the
dashed line combining these ends represents the plain SW
behavior of � as a function of both � and C4. With this
dashed curve one can immediately understand why in Table I
� appears as an increasing function of C4 in the plain SW
network, in marked contrast to the GSW case with �	2.

V. SUMMARY AND DISCUSSION

We have presented a study of the SH model for the for-
mation of striped patterns on the GSW network. In SW net-
works, the original local �short-range� interaction topology is
extended to include possibly long-ranged links. Recall that
the striped pattern results from the competing interactions:

one favors the homogenization, whereas the other wants the
heterogeneous distribution of the order parameter field.
Therefore the following question that we have pondered in
the present paper is nontrivial: Could the long-range random
connections present in the networks enhance the spatial
stripe organization process? Or, will this rather spoil the or-
ganization process with its concomitant effect of partially
destroying the spatial heterogeneity?

Our study has revealed that spatial disorder in the form of
random shortcuts in the network always inhibits rather than
facilitates the ordering dynamics of stripes, making the stripe
ordering harder to achieve. This conclusion is irrespective of
whether the SW network is plain or geographical in which
the interaction is slowly decaying with Euclidean distance.

Having focused our attention to the general question
above, we may now ask a more specific question: How long
ranged are nonlocal connections when they become effective
in freezing the coarsening process? That is, does there exist
any typical distance between the ends of shortcut at which
the crossover to very slow ordering dynamics occurs? To
answer the question, let us construct from our GSW network
a new network topology with pruned connections, which is
akin to the so-called �13� uniform spatial graphs. We do this
as follows: the random shortcuts whose spatial length is
longer than the cutoff distance, �c, are all deleted from the
GSW network.

Simulations were then performed on such networks with
various values chosen for �c, otherwise the simulation
method being same as described in Sec. IV A. Figure 7
shows the growth exponent thus obtained as a function of �c,
in which the dimensionless variable �c /� is used where � is
a spatial period of the striped pattern that is observed for a
respective data point. We see that in the case a frozen stripe
state is eventually reached �p=0.3�, the exponent decreases
rapidly in a rather small region of �c /� near �c /��1 /2. This
suggests that not too long shortcuts of a distance comparable
to the stripe width suffice for the freezing to be induced.
Similar observation was made in our previous study of coars-
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FIG. 5. �a� The peak position kc of the structure factor at time
step 398 107 and �b� the growth exponent � versus � for p=0.1,
0.4, and 1.0. The open symbols in �a� denote the extrapolated
threshold values for p=0.4 and p=1.0, which are obtained by the
nonlinear curve fit to the data points �filled symbols�. The dashed
lines in �a� represent the values at �=� for respective p’s. The
dashed lines in �b� indicate the values of � at �=� for p=0.4
�lower� and 0.1 �upper� and for p=1.0 we found �=0.20 at �=�.
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FIG. 6. Growth exponent � versus the clustering coefficient C34

when the average shortest-path length � is fixed at ��35 �top� and
��13 �bottom�. The data are computed averaging over five differ-
ent realizations of the network of size 5122. The solid lines are
drawn as a guide for the eyes. The open circular symbols connected
by the dashed curve represent the case of the plain SW networks;
from top to bottom ��35,27,16,13.
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ening dynamics on the plain SW networks �45�. These find-
ings are also in accord with the proposed scenario �46� for a
glassy state in general that in a system with competing inter-
actions relevant to the formation of stripes, emergence of
glassiness is tied to the critical value of a characteristic
length scale which is close to the stripe width.

The emergence of dynamically frozen configurations can
be interpreted qualitatively by the following argument. Con-
sider Fig. 8 which shows a typical frozen pattern that was
observed in our simulations conducted at parameters corre-
sponding to point A in Fig. 7. The shortcut that connects two
nodes of the same sign of � �or “like” pairs �21�� is repre-
sented by a solid line. Among these shortcuts, those encircled
by ellipse �referred to as “unfavorable” shortcuts� connect
like nodes both contained in the disparate and, say, white
regions. When the shortcut length ��s� is smaller than the
typical distance �� /2� between stripes, stripe domain coars-
ening is slowed down by like pairs since “unlike” pairs turn
more easily to like pairs than the contrary. In this case, how-
ever, the presence of like pairs is not so effective as to arrest
striped configurations as a whole. On the increase in �s to
�s�� /2, on the other hand, unfavorable shortcuts can now
be generated dynamically. Any distorted interface passing
through the unfavorable shortcut cannot easily straighten or
flatten out since it is energetically unfavorable. Thus the un-
favorable shortcuts in this case play the role of pinning sites.
For rather larger p, the system contains many unfavorable
pinning sites as in Fig. 8, which in turn generate metastabil-

ity that many different microscopic configurations are locally
stable. Therefore the system is prevented from reaching a
configuration with straight domain boundaries, leading to a
very slow or arrested dynamics.

Target patterns as well as spiral patterns can be found in
the heart and the brain �6,16�. In this case, the desire to
understand how the functional disorders such as fibrillation
and epilepsy are established and to develop treatment to
avert the establishment of those abnormal organizations un-
derlies much of the research on the spatial organization of
cardiac and neuronal activities �6�. In view of the fact that
SW topologies have been associated with those activity pat-
terns �17,47�, our results that increasing disorder �p� or the
range of connection can destroy the lamellar structure, and
particularly that the presence of relatively short-ranged short-
cuts is responsible for freezing the coarsening process will
certainly point toward intriguing possibility of the role of
GSW connections in removal of the physiological abnor-
malitites.

To understand the role of randomness in ordering dynam-
ics of striped patterns, we have confined ourselves to the
small-world effects. In real network structures, however,
there is another generic feature that is missing from the
present study. These networks have a highly inhomogeneous
structure reflected in their fat-tailed degree distribution P�K�
which follows a power law P�K��K−�, thus being desig-
nated as scale-free networks �9–11�. Therefore it would be
interesting to study how the coarsening dynamics changes in
that case, and we plan to present such analysis elsewhere.
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FIG. 7. Growth exponent � versus �c /� for various p at
�=3.6. Five samples of size 5122 are used to obtain each data. The
growth exponents in this figure are measured on the geographical
SW networks in which every shortcut whose Euclidean length is
longer than �c is deleted. The � is calculated with �=2� /kc, kc

being the peak position of S�k� at time step 398 107. A sample
configuration which corresponds to point A is shown in Fig. 8.

FIG. 8. Glassy configuration for �c /��0.8 ��c=7� in the pres-
ence of unfavorable shortcuts �encircled with ellipse� which tend to
pin the stripe interfaces. A solid line represents the shortcut con-
necting the like nodes, while a dashed line contains an unlike pair.
For clarity only the shortcuts whose Euclidean length is five or
more are drawn. Shown here is a 502 portion of the 5122 lattice
system.
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